Home » Évènement » Soutenance de thèse de Konstantin AKHMADEEV (équipes ReV et SIMS)
Loading Events
  • This event has passed.

Soutenance de thèse de Konstantin AKHMADEEV (équipes ReV et SIMS)

20 novembre 2019 @ 14 h 00 min - 16 h 00 min

Konstantin Akhmadeev, doctorant au sein des équipes ReV et SIMS, soutiendra sa thèse intitulée « Modèles probabilistes fondés sur la décomposition d’EMG pour la commande de prothèses »

mercredi 20 novembre 2019 à 14h, dans l’amphi du bâtiment S sur le site de Centrale Nantes.

Jury :

  • Directeur thèse : AOUSTIN Yannick
  • Co-encadrant : LE CARPENTIER Eric
  • Rapporteurs :  SERVIERE Christine (CR CNRS, GIPSA), MARIN Frédéric (BMBI, U Compiègne)
  • Examinateurs : FARINA Dario (Imperial College London), PEREON Yann (Institut du Thorax), NORDEZ Antoine (EA 4334, U Nantes)

Résumé :
Le pilotage moderne de prothèse robotisée de bras peut être sensiblement amélioré par l’utilisation de la décomposition d’EMG. Cette technique permet d’extraire l’activité des motoneurones de la moelle épinière, une représentation directe de la commande neuronale. Cette activité, qui est insensible aux facteurs non-liés au mouvement, tels que le type ou la position d’électrode EMG, est essentielle pour le pilotage des prothèses.
Cependant les méthodes de décomposition existantes ne fournissent que l’activité d’un nombre limité de motoneurones. Cette information peut être considérée insuffisante pour en inférer l’intention de l’utilisateur. Dans ce travail, nous présentons une approche probabiliste qui utilise les modèles existants de la relation entre les activités des motoneurones et le mouvement. Nous comparons cette approche à une approche plus conventionnelle et montrons qu’elle fournit de meilleurs résultats même quand elle est alimentée avec un nombre très bas de motoneurones décomposés.
Pour évaluer sa performance dans un environnement contrôlé, nous avons développé un modèle physiologique de simulation d’EMG et de contraction de muscle. De plus, une analyse sur les signaux expérimentaux a été réalisée.

*********

Abstract:
Modern prosthetic control can be significantly enhanced due to the use of EMG decomposition. This technique permits to extract the activity of motor neurons that control the movement, thus giving a direct representation of neural command. This activity, being unaltered by factors non-related to motion, such as type and position of EMG electrode, is of great interest in prosthetic control.
Existing real-time decomposition methods, however, provide activities of a very limited number of motor neurons (up to ten). This can be considered insufficient for intent inference. In this work, we present a probabilistic approach to intent inference that uses existing models of relations between the behavior of motor neurons and the movement. We compare our approach with a conventional one presented in the literature and show that it produces significantly better results when provided with a small number of decomposed motor neurons.
To assess its performance in a fully controlled environment, we have developed a physiology-based simulation model of EMG and muscle contraction. Moreover, the analysis was also performed using experimental recordings of muscle contractions.

Détails

Date :
20 novembre 2019
Heure :
14 h 00 min - 16 h 00 min
Organisateur
LS2N

Catégories d’Évènement:
,
Évènement Tags:
, , ,

Lieu

ECN
Copyright : LS2N 2017 - Mentions Légales - 
 -