Tianyi Yu, doctorant au sein des équipes ReV et SIMS, soutiendra sa thèse intitulée « Décomposition en temps réel de signaux iEMG : filtrage bayésien implémenté sur GPU » / « On-line decomposition of iEMG signals using GPU-implemented Bayesian filtering »
lundi 28 janvier 2019 à 10h30, dans l’amphi du bâtiment S sur le site de Centrale.
La soutenance aura lieu en anglais.
Jury : Yannick Aoustin (Directeur thèse), Eric Le Carpentier (co-encadrant), Philippe Ravier (Université d’Orléans, rapporteur), Fabien Campillo (Inria Montpellier, rapporteur), Zohra Cherfi-Boulanger (UTC), Dario Farina (Imperial College London)
Résumé :
Un algorithme de décomposition des unités motrices, qui constituent un signal électro-myographiques intramusculaires (iEMG) a été proposé au laboratoire LS2N. Il s’agit d’un filtrage bayésien qui estime l’état d’un modèle de Markov caché. Cet algorithme demande beaucoup de temps d’exécution, même pour un signal ne contenant que 4 unités motrices.
Dans notre travail, nous avons d’abord validé cet algorithme dans une structure série. Nous avons proposé quelques modifications pour le modèle de recrutement des unités motrices et implémenté deux techniques de pré-traitement pour améliorer la performance de l’algorithme. Le banc de filtres de Kalman a été remplacé par un banc de filtre LMS. Le filtre global consiste en l’examen de divers scénarios arborescents d’activation des unités motrices : deux techniques heuristiques ont été introduites pour élaguer les différents scénarios. On a réalisé l’implémentation GPU de cet algorithme à structure parallèle intrinsèque.
On a réussi la décomposition de 10 signaux expérimentaux enregistrés sur deux muscules, respectivement avec électrode aiguille et électrode filaire. Le nombre d’unités motrices est de 2 à 8. Le pourcentage de superposition des potentiels d’unité motrice, qui représente la complexité de signal, varie de 6.56 % à 28.84 %. La précision de décomposition de tous les signaux est supérieure à 90 %, sauf pour deux signaux qui sont à 30 % MVC et dont la précision de décomposition est supérieure à 85%. Nous sommes les premiers à réaliser la décomposition en temps réel pour un signal constitué de 10 unités motrices.
*******
Abstract:
A sequential decomposition algorithm based on a Hidden Markov Model of the EMG, that used Bayesian filtering to estimate the unknown parameters of discharge series of motor units was previously proposed in the laboratory LS2N. This algorithm has successfully decomposed the experimental iEMG signal with four motor units. However, the proposed algorithm demands a high time consuming.
In this work, we firstly validated the proposed algorithm in a serial structure. We proposed some modifications for the activation process of the recruitment model in Hidden Markov Model and implemented two signal pre-processing techniques to improve the performance of the algorithm. Then, we realized a GPU-oriented implementation of this algorithm, as well as the modifications applied to the original model in order to achieve a real-time performance. Specifically, we proposed a replacement of the originally proposed Kalman filter by a least-mean-square filter with a significant reduction of computational load. Moreover, we introduced two heuristic-based techniques of branch discarding in order to simplify the problem of optimal spike sequence search. Then, an optimal parallelization of the algorithm is presented, along with details of its implementation on GPU.
We have achieved the decomposition of 10 experimental iEMG signals acquired from two different muscles, respectively by fine wire electrodes and needle electrodes. The number of motor units ranges from 2 to 8. The percentage of superposition, representing the complexity of iEMG signal, ranges from 6.56 % to 28.84 %. The accuracies of almost all experimental iEMG signals are more than 90 %, except two signals at 30 % MVC (more than 85 %). Moreover, we realized the real-time decomposition for all these experimental signals by the parallel implementation. We are the first one that realizes the real time full decomposition of single channel iEMG signal with number of MUs up to 10, where full decomposition means resolving the superposition problem. For the signals with more than 10 MUs, we can also decompose them quickly, but not reaching the real time level.