Home » Évènement

Soutenance de thèse de Vimalesh MURALIDHARAN

Vimalesh MURALIDHARAN doctorant au sein de l’équipe ReV, présentera sa thèse intitulée :

Conception et analyse de manipulateurs inspirés par la tenségrité / Design and analysis of tensegrity-inspired manipulators

Elle aura lieu le 06.12.23 à 14h, Amphi S, École Centrale de Nantes

Lien visio: https://ec-nantes.zoom.us/j/97069897397

La soutenance sera suivie d’un pot dans la salle xxxx, auquel vous êtes toutes et tous convié(e)s.

Jury :

  • Directeur de thèse : Philippe WENGER
  • Rapporteurs : Clément GOSSELIN (Professeur d’université, Université Laval, Québec, Canada); Marc GOUTTEFARDE (Directeur de recherche, CNRS, LIRMM, Montpellier, France)
  • Invités : Pierre RENAUD (Professeur d’université, INSA, Strasbourg, France); Quentin BOEHLER (Ingénieur de recherche, ETH Zurich, Zurich, Switzerland); Christine CHEVALLEREAU

Résumé : Cette thèse étudie les articulations et les manipulateurs inspirés de la tenségrité, équipés de ressorts et actionnés de manière redondante par des câbles antagonistes. La
redondance de l’actionnement est exploitée pour moduler leur rigidité dans une configuration donnée. La condition pour obtenir une corrélation positive entre les forces d’actionnement et la rigidité est obtenue pour une articulation générale à un seul degré de liberté (1-DDL). Ce phénomène, appelé coactivation dans les articulations biologiques, permet d’améliorer l’efficacité énergétique. Parmi les articulations à pivot (R) et les mécanismes symétriques à quatre barres, l’antiparallélogramme (X) offre la plus grande amplitude de mouvement avec coactivation. C’est pourquoi un manipulateur planaire 2-DDL avec deux articulations X est conçu. Deux schémas d’actionnement avec quatre et trois câbles, respectivement, sont examinés pour ce manipulateur. Les performances en termes d’espace de travail, de vitesse, de force et de rigidité sont comparées pour les deux schémas. Les considérations de conception de ce manipulateur, à savoir les limites des articulations, la faisabilité mécanique des ressorts et la resistance des barres, sont abordées. L’optimisation de la conception et la comparaison des manipulateurs 2-X et 2-R sont effectuées avec des spécifications identiques en matière de charge utile et d’espace de travail. Enfin, une articulation X modifiée est développée avec
seulement des articulations sphériques, et un manipulateur spatial 3-X inspiré de la tenségrité est construit.

Mots-clés : Tenségrité, conception bio-inspirée, anti-parallélogramme, actionnement antagoniste, espace de travail, conception optimale

Abstract : This thesis studies tensegrity-inspired joints and manipulators equipped with springs and redundantly actuated by antagonistic cables. The actuation redundancy is leveraged to modulate their stiffness at a given configuration. The condition to achieve a positive correlation between actuation forces and stiffness is derived for a general single-degree-of-freedom (1-DoF) joint. This phenomenon is called coactivation in biological joints, which leads to energy efficiency. Among the revolute joint (R-joint) and symmetric four-bar mechanisms, the anti-parallelogram (X-joint) offers the maximum range of movement with coactivation. Hence, a planar 2-DoF manipulator with two X-joints is conceived. Two actuation schemes with four and three cables, respectively, are examined for this manipulator. The workspace, velocity, force, and stiffness performances are compared for the two schemes. The design considerations for these manipulators, namely, the joint limits, mechanical feasibility of springs, and safety of bars, are addressed. Design optimization and comparison of 2-X and 2-R manipulators are performed with identical payload and workspace specifications. Finally, a modified X-joint is developed with only spherical joints, and a spatial 3-X tensegrity-inspired manipulator is constructed.

Keywords: Tensegrity, bio-inspired design, anti-parallelogram, antagonistic actuation, workspace, optimal design

 

Soutenance de thèse de Durgesh Salunkhe

Durgesh Salunkhe, doctorant au sein de l’équipe ReV, présentera sa thèse intitulée :

« Robots cuspidaux : étude théorique, classification et applications aux robots commerciaux »  /  « Cuspidal robots: theoretical study, classification, and applications to commercial robots. »

Elle aura lieu le 27.11.23 à14h, Amphi S, École Centrale de Nantes

 

Composition du jury :

Rapporteurs :

Prof. Federico Thomas

Prof. Med Amine Laribi

Président de jury :

Prof. Mohab Safey El Din

 

Membres du jury :

Prof. Mohab Safey El Din

Prof. Michel Coste

Dr. Solen Corvez-Ferte

Dr. Adolfo Suarez-Roos

Résumé :

Les robots cuspidaux sont des robots qui possèdent au moins une région connectée avec de multiples solutions cinématiques inverses. Cela permet aux robots cuspidaux de changer de solutions sans traverser de singularités. Cette thèse doctorale présente une étude théorique sur l’analyse cuspidale des robots sériels à 3 articulations rotatives (3R). La thèse présente également des algorithmes d’identification pour déterminer la cuspidalité des robots génériques à 6R. Ensuite, l’application de la cuspidalité est présentée en abordant les problèmes et en développant un cadre de planification de trajectoire pour les robots commerciaux cuspidaux. Une conclusion est apportée à la conjecture sur les robots cuspidaux à 3R à la suite du travail présenté, et la question du nombre d’aspects dans un robot générique à 3R est éclaircie. Une preuve de l’existence d’aspects réduits pour un robot générique à 3R est également présentée. La preuve présentée sur la cuspidalité des robots à 6R est réexaminée, et la nécessité de prêter attention au sujet de la cuspidalité dans la planification de trajectoire est d’autant plus motivée. Les problèmes critiques existant dans les robots commerciaux à 6R, largement ignorés, sont exposés, et un cadre de planification de trajectoire pour leur atténuation est présenté.

Mots-clés : cinématique, planification de trajectoire, optimisation de conception, robots cuspidaux, robots commercial

Abstract:

Cuspidal robots are robots that have at least one connected region with multiple inverse kinematic solutions. This allows cuspidal robots to change solutions without crossing singularites. This doctoral thesis presents theoretical study on the cuspidal analysis of 3 revolute jointed (3R) serial robots. The thesis also presents identification algorithms to decide cuspidality of generic 6R robots. Later, the application of cuspidality is presented by discussing issues and developing a trajectory planning framework of cuspidal commercial robots. A closure to the conjecture in 3R cuspidal robots is provided as a result of the presented work, and the question on number of aspects in generic 3R robot is concluded. A proof for the existence of reduced aspects for a generic 3R robot is presented too. A presented proof on cuspidality in 6R robots is reinvestigated, and the need of attention to the topic of cuspidality in path planning is further motivated. The critical issues existing in commercial 6R robots that are largely ignored are shown, and a path planning framework for their mitigation is presented.

Keywords: kinematics, trajectory planning, design optimisation, cuspidal robots, commercial robots

Soutenance de thèse de Côme Butin

Côme Butin, doctorant au sein de l’équipe ReV, présentera sa thèse intitulée :

« Design and realization of a new accessible myoelectric hand prosthesis » / « Conception et réalisation d’une nouvelle prothèse de main myoélectrique accessible ».

Elle aura lieu le 28/09/2023 à 14h, Amphi S à l’Ecole Centrale de Nantes


Jury :
– Directeur de thèse : Damien Chablat
– Co-directeur : Yannick Aoustin
– Rapporteurs : Nathanaël Jarrassé (Charge de recherche CNRS (HDR), affectation labo) ; Mathieu Grossard (Directeur de recherche CEA, affectation labo)
– Autres membres : Maud Marchal (Professeure des Universités, INSA Rennes – IRISA) ; Phillipe Wenger (Directeur de recherche CNRS, LS2N) ; David Gouaillier (Ingénieur de recherche, ORTHOPUS)

Résumé : L’objectif principal de cette thèse est de présenter une prothèse de main myoélectrique accessible qui combine des critères tels que le prix abordable, la solidité, la fonctionnalité et la performance.

Cette nouvelle prothèse permet d’effectuer des prises latérales et opposées. Tout d’abord, nous proposons une méthode de placement des articulations qui permet d’obtenir un résultat plus réaliste sur le plan anthropomorphique. De plus, nous avons développé et optimisé une solution de transmission interdigitale qui permet d’associer la flexion des doigts supérieurs à celle du pouce. Une analyse détaillée de la performance énergétique et thermique
de la prothèse est également présentée. Nous avons proposé une nouvelle stratégie de commande qui tire parti de l’irréversibilité de la transmission de puissance et nous l’avons étudiée. Enfin, nous soulignons l’importance d’une transmission de puissance optimale sur le plan énergétique. Pour cela, nous décrivons en détail la synthèse d’un nouveau mécanisme de réducteur à rapport variable, ainsi que la présentation d’un nouveau mécanisme d’irréversibilité efficace. Enfin, nous avons évalué individuellement tous ces composants de prothèse en mettant en place des prototypes expérimentaux qui démontrent leur utilité. L’intégration de ces composants dans une nouvelle prothèse est une perspective envisagée dans cette étude.

Mots-clés
Main prothétique ; Commande thermique ; Cinématique anthropomorphique; Transmission variable ; Irréversibilité
Abstract: The main objective of this thesis is to present an accessible myoelectric hand prosthesis that combines criteria such as affordability, durability, functionality, and performance.
This new prosthesis allows for both lateral and opposing grips. Firstly, we propose a method for joint placement that achieves a more realistic anthropomorphic result. Additionally, we have developed and optimized an interdigital transmission solution that enables the coordination of the flexion between the upper fingers and the thumb. A detailed analysis of the prosthesis’s energy and thermal performance is also provided. We have proposed a new control strategy that takes advantage of the irreversibility of power transmission and thoroughly studied it. Furthermore, we emphasize the importance of achieving optimal energy-efficient power transmission. To this end, we describe in detail the synthesis of a new mechanism with variable reduction ratio and present a new efficient irreversibility mechanism. Finally, we individually evaluate all these prosthesis components by implementing experimental prototypes that demonstrate their usefulness. The integration of these components into a new prosthesis is a prospective direction explored in this study.

Keywords: 
Prosthetic hand; Thermal control; Anthropomorphic kinematics; Variable transmission; Non-backdrivability

Soutenance de thèse d’Anne KALOUGUINE (équipe ReV)

Anne Kalouguine, doctorante au sein de l’équipe ReV, soutiendra sa thèse intitulée « Marche inspirée de l’humain pour le robot Romeo » / « Human-inspired walking for the robot Romeo »
lundi 6 décembre 2021, en visio.

Jury :
– Directeur de thèse : Yannick AOUSTIN – Professeur des universités, Université de Nantes
– Co-directrice de thèse : Christine CHEVALLEREAU – Directrice de recherche CNRS, LS2N
– Co-encadrant : Sébastien DALIBARD – Ingénieur, SoftBank Robotics Europe
– Rapporteurs : Samer Alfayad – Professeur des universités, Université d’Evry ; Olivier Bruneau – Professeur des universités, ENS Cachan Paris-Saclay
– Autres membres : Olivier Stasse – Directeur de recherche CNRS, LAAS

Résumé : L’objectif de cette thèse est de développer une méthode de génération de mouvements de marche inspirés de l’humain et adaptés à la plateforme robotique Romeo. La marche recherchée reprend les caractéristiques essentielles de la marche humaine (trajectoire du centre de masse, mouvements du pied libre et des bras) tout en conservant un équilibre dynamique du robot. Une étude bibliographique des mouvements humains permet d’établir les caractéristiques essentielles de la marche qui doivent être conservées. Ces caractéristiques sont ensuite adaptées aux capacités de la plateforme robotique (limites en couple, position, vitesse et accélération des articulations). Un mouvement de marche périodique est généré grâce à l’utilisation du Modèle Essentiel et des caractéristiques définies précédemment. Ces mouvement de marche périodiques sont ensuite enrichis d’une phase de démarrage et d’une phase d’arrêt. La marche complète ainsi obtenue est testée en simulation et sur la plateforme physique.

Mots-clés : Modèle dynamique, Marche bipède, Imitation, Equilibre

—————————————————————————————————————————————————————————————————————————————————————-

Abstract: The objective of this thesis is to develop a method for generating various human inspired walking movements adapted to the Romeo robotic platform. The desired walking gait must retain the essential characteristics of human gait (trajectory of the centre of mass,foot and arm movements) while maintaining a dynamic balance of the robot. A bibliographical study of human movements is used to establish the essential characteristics of walking that are to be preserved. These characteristics are then adapted to the constraints of the robotic platform (limits in torque, position, speed and acceleration of the robot joints). A periodic gait motion is generated using the Essential Model and the previously defined characteristics. Finally, start and stop walking motions corresponding to the chosen periodic gait are generated. The resulting complete walking motion is tested in simulation and on the physical platform.

Keywords: Dynamical model, Bipedal walking, Imitation, Balance

Soutenance de thèse de Benjamin FASQUELLE (équipe ReV)

Benjamin Fasquelle, doctorant au sein de l’équipe ReV, soutiendra sa thèse intitulée « Étude théorique et expérimentale d’architectures innovantes de robots inspirées du cou des oiseaux : conception et commande » / « Theoretical and experimental study of innovative robot architectures inspired by the neck of birds : design and control« 

vendredi 10 décembre 2021 à 10h, dans l’amphi du bât. S, sur le site de Centrale Nantes.

https://univ-nantes-fr.zoom.us/j/97856509685?pwd=dHN5YWpaUFdqWGdmUmFzRTl3OXMxUT09
(ID de réunion : 978 5650 9685 / Code secret : 091340)

Jury :
– Directeur de thèse : Philippe Wenger
– Co-encadrant : Christine Chevallereau
– Rapporteurs : Philippe Poignet (Professeur des Universités, Université Montpellier, LIRMM); Jean-Pierre Merlet (Directeur de Recherche, INRIA, centre Sophia Antipolis)
– Autres membres : Anick Abourachid (Professeur, Muséum National d’Histoire Naturelle, Mecadev) ; Christian Duriez (Directeur de Recherche, Université de Lille, INRIA Lille); Matthieu Furet (Docteur, Professeur agrégé, Université Toulouse 3); Med Amine Laribi (Maître de Conférence, Université de Poitiers, Institut P’)

Résumé : Les systèmes biologiques représentent une grande source d’inspiration pour les roboticiens.
Les systèmes de tenségrité, composés d’éléments rigides et d’éléments en tension, sont particulièrement adaptés pour la bio-inspiration puisque l’on retrouve ces systèmes directement dans divers systèmes biologiques. Dans cette thèse, nous étudions un manipulateur inspiré du cou des oiseaux. Ce manipulateur est un empilement de modules qui possèdent chacun un degré de liberté. Chaque module est un mécanisme de tenségrité composé de quatre barres et deux ressorts. Le manipulateur est actionné à l’aide de câbles, ainsi tous les moteurs se situent à sa base. Le modèle géométrique et le modèle dynamique du manipulateur sont développés, puis une analyse de l’actionnement et de l’espace de travail statique du manipulateur est menée. Un actionnement avec quatre câbles est sélectionné pour un prototype composé de trois modules. Ce prototype n’a pas de mesure directe des orientations des modules, deux méthodes pour calculer ces orientations en fonction des positions moteurs sont donc proposées. Une identification des frottements moteurs et de l’élasticité des câbles est menée afin d’améliorer les performances de la commande du prototype, et d’avoir un simulateur efficace. Trois commandes sont développées et testées sur le prototype : une commande articulaire, une commande dans l’espace des moteurs et une commande dans l’espace opérationnel. Des trajectoires sont ensuite optimisées dans le but de produire des mouvements en minimisant les forces appliquées ou de produire des mouvements à grande vitesse, comme peut le faire le pic lorsqu’il frappe un tronc d’arbre avec son bec. La thèse se termine sur une ouverture vers un manipulateur sous-actionné constitué d’une dizaine de modules.

Mots-clés : tenségrité, bio-inspiration, robotique, robot à câbles, commande

—————————————————————————————————————————————————————————————-
Abstract: Biological systems are a great source of inspiration for roboticists. Tensegrity systems, composed of rigid and tensile elements, are particularly suitable for bio-inspiration since these systems are found directly in various biological systems. In this thesis, we study a manipulator inspired by the neck of birds. This manipulator is a stack of modules that each have one degree of freedom. Each module is a tensegrity mechanism composed of four bars and two springs. The manipulator is operated by cables, so all the motors are located at its base. The geometric model and the dynamic model of the manipulator are developed, then an analysis of the actuation and the static workspace of the manipulator is conducted. An actuation with four cables is selected for a prototype composed of three modules. This prototype has no direct measurement of the modules orientations, so two methods to calculate these orientations according to the motor positions are proposed. An identification of the motor friction and the elasticity of the
cables is carried out in order to improve the performances of the prototype control, and to have an effective simulator. Three controls are developed and tested on the prototype : a joint control, a control in the space of the motors and a control in the operational area. Trajectories are then optimized in order to produce movements by minimizing the applied forces or to produce high speed movements, as the woodpecker can do when it hits a tree trunk with its beak. The thesis ends with an opening towards an underactuated manipulator made of about ten modules.

Keywords: tensegrity, bio-inspiration, robotics, cable robot, control

Soutenance de thèse de Wanda ZHAO (équipe ReV)

Wanda Zhao, doctorant au sein de l’équipe ReV, soutiendra sa thèse intitulée « Conception d’un effecteur pour robots collaboratifs« / « Design of robot end-effector for collaborative robot works »
vendredi 2 décembre 2021 à 10h, dans l’amphi du bâtiment S sur le site de Centrale Nantes.

Jury :
– Directeur de thèse : Damien CHABLAT (Professeur, LS2N, ECN )
– Co-encadrant : Anatol PASHKEVICH (Professeur, LS2N, IMT Atlantique)
– Rapporteurs : Marc GOUTTEFARDE (LIRMM, CNRS, Montpellier) ; David DANEY (INRIA, Talence)
– Examinateurs : Christian DURIEZ (INRIA, Villeneuve d’Ascq) ; Emmanuelle POUYDEBAT (MECADEV, CNRS, Paris) ; Margot VULLIEZ (Pprime, Université de Poitiers)

Résumé :
L’objectif de cette thèse est la conception de nouveaux effecteurs polyvalents et souples pour les robots collaboratifs, qui sont basés sur des mécanismes de tenségrité multi-segments à double-triangle qui peuvent être actionnés indépendamment pour obtenir la configuration désirée avec de bonne propriétés de rigidité. Contrairement aux effecteurs rigides conventionnels, l’analyse de la rigidité a démontré que ce type de mécanisme peut atteindre une grande flexibilité ; les concepteurs peuvent évaluer la sensibilité de la rigidité de ce mécanisme par rapport à une configuration initiale arbitraire pour différentes combinaisons de paramètres géométriques, de charge externes et de précontraintes des ressorts. Le phénomène de flambage et de quasi-flambage de ce mécanisme sous chargements a été étudié. Une méthode analytique permettant de calculer la force critique de flambage pour cette structure avec un nombre arbitraire de segments a été proposée. Elle est basée sur l’analyse des valeurs propres d’une matrice dépendant des paramètres géométriques et élastostatiques. Cela permet aux concepteurs de prédire ou d’éviter les états dangereux de ce mécanisme en modifiant correctement les paramètres géométriques et les entrées de la commande. De plus, les stratégies de contrôle cinématique basées sur l’optimisation ont été proposées dans cette thèse, ce qui permet à ce mécanisme multi-segment redondant d’atteindre l’emplacement d’une cible et d’éviter les collisions entre l’effecteur et le corps du robot et les obstacles de l’espace de travail. Les avantages de la technique développée sont confirmés par la simulation informatique, et les résultats montrent que ce mécanisme redondant en série a une capacité de changement de forme très flexible tout en traversant l’espace de travail.

Mots-clés : Effecteur de robot, robot souple, mécanisme de tenségrité, analyse de la rigidité, contrôle cinématique.

—————————————————————————————————————————————————————————————————————————————————————-
Abstract:
This thesis focuses on the design of new versatile and compliant end-effectors for collaborative robot works, which are based on multi-segment dual-triangle tensegrity mechanisms that can be actuated independently to achieve the desired configuration with the required stiffness properties. Different with the conventional rigid robot end-effectors, it was demonstrated from the stiffness analysis that such type of mechanism can achieve high flexibility; designers can evaluate the stiffness sensitivity of this mechanism with respect to an arbitrary initial configuration for different combination of the geometric parameters, external loading and the spring’s pre-stresses. Besides, the buckling and quasi-buckling phenomenon of this serial mechanism under the loading were detected. And an analytical method allowing to compute the critical force causing the buckling for this serial structure with an arbitrary number of segments was proposed, which is based on the eigenvalue analysis of the some special matrix depending on both geometric and elastostatic parameters. This allows designers to predict or avoid the dangerous states of this mechanism by properly changing the geometric parameters and control inputs. Furthermore, the optimization-based kinematic control strategies were proposed in this thesis, which allow this redundant multi-segment mechanism to achieve the target endpoint location and avoid collisions between not only the mechanism end-point but also the mechanism body and the workspace obstacles. The advantages of the developed technique are confirmed via the computing simulation, and the results show that this redundant serial mechanism has a very flexible shape changing capacity while passing through the task space.

Keywords: robot end-effector, compliant manipulator, tensegrity mechanism, stiffness analysis, kinematic control.

Soutenance de thèse de Guillaume MICHEL (équipe ReV)

Guillaume MICHEL, doctorant au sein de l‘équipe ReV soutiendra sa thèse intitulée « Etude d’un robot d’assistance pour la chirurgie endoscopique otologique et sinusienne » / « Study of an assistance robot for endoscopic otological and sinus surgery »

mercredi 7 juillet 2021 à 10h dans l’amphi S sur le site de Centrale Nantes.

Jury :
– Directeur de thèse : Damien CHABLAT
– Co-encadrant : Philippe BORDURE (Professeur des universités – Praticien Hospitalier, CHU de Nantes)
– Rapporteurs : Philippe POIGNET (Professeur des universités, Directeur du LIRMM, Montpellier) ; Valérie FRANCO VIDAL (Professeure des universités – Praticien Hospitalier, CHU de Bordeaux)
– Autres membres : Caroline CAO (Professeure des Universités, LS2N) ; Med Amine LARIBI (Maître de Conférences HDR, Institut Pprime, Université de Poitiers) ; Laurence NOUAILLE (Maître de Conférences, PRISME, Université d’Orléans)

Résumé :
La chirurgie endoscopique de l’oreille et des sinus permet de favoriser des voies mini-invasives et de visualiser des zones difficiles à atteindre. Elles ne sont cependant pas toujours aisées, car immobilisent une main du chirurgien pour le maintien de l’endoscope. L’objectif de cette thèse est alors de concevoir un robot d’assistance pour ce type de chirurgie endoscopique.
La thèse débute par un rappel des régions anatomiques de l’oreille et des sinus, puis par la réalisation d’un atlas géométrique, d’après scanners, permettant la définition des dimensions de ces espaces de travail robotiques et de leurs variations. Après un état de l’art des robots déjà existants pour la chirurgie de l’oreille et des sinus, nous introduisons notre robot porte-endoscope par une analyse fonctionnelle. Elle est confrontée à une veille de brevets, qui mène ensuite à un dépôt de brevet, publié en 2021. Une étude de marché est ensuite présentée, montrant l’intérêt des utilisateurs des spécialités concernées.
La phase de conception du robot débute alors, par l’analyse de différents choix d’architecture, autour de variations d’un mécanisme à centre de rotation déporté, couplant un mécanisme sphérique à 2 degrés de liberté avec un double parallélogramme. Un nouvel algorithme d’optimisation a été réalisé, basé sur l’algorithme de Nelder Mead, permettant l’optimisation de mécanismes parallèles. Les modalités du contrôle de ce robot par suivi d’image ont enfin été définies, à l’aide d’un algorithme utilisant le CamShift.

Mots-clés : chirurgie endoscopique, robotique chirurgicale, ORL, mécanisme parallèle, optimisation
————————————————————————————————————————————————————————————————————

Abstract:
Endoscopic ear and sinus surgery promotes minimally invasive pathways and allows a better view of areas difficult to access. However, they are not always easy, as they immobilize a surgeon’s hand to hold the endoscope. The objective of this thesis is to design an assistance robot for this type of endoscopic surgery.
The thesis begins with a reminder of the anatomical regions of the ear and sinuses, then with a geometrical atlas based on scans. These measurements size these robotic workspaces and their variations. After a state of the art of the existing robots for ear and sinus surgery, we introduce our endoscope holder robot with a functional analysis. This analysis is confronted with a patent watch, which leads to a patent filing, published in 2021. Then, a marketing study is presented, showing the interest of users of the specialties concerned.
The robot design phase begins, with analysis of different architectures, variations of a remote center of motion mechanism, made by coupling two degrees of freedom spherical mechanism with double parallelograms. A new optimization algorithm has been introduced, based on the Nelder Mead algorithm. It allows the optimization of parallel mechanisms. Robot control by image tracking has finally been defined, with an algorithm using CamShift.

Keywords: endoscopic surgery, surgical robotics, ENT, parallel mechanism, optimization

Conférence de Sophie Sakka dans le cadre de l’opération Futurobot

Sophie Sakka (équipe ReV) participera mardi 25 mai 2021 – 18h30 à une conférence à l’Espace des sciences à Rennes sur le thème de la robotique, aux côtés de Luc Jaulin du Labsticc et Jean-Pierre Gazeau du laboratoire Pprime.
Elle abordera le thème de la robotique comme outil pour l’accompagnement thérapeutique de personnes en situation de handicap cognitif.

Cet événement s’inscrit dans le cadre des opérations nationales CNRS Futurobot programmées initialement en 2020, et en majorité annulées en raison de la crise sanitaire.
Il sera diffusé en direct sur la chaîne Youtube de l’Espace des Sciences : https://www.youtube.com/espacedessciences, et disponible en replay.

[Replay] Conférence de Frédéric Boyer sur le sens électrique pour la Cité des Sciences et de l’Industrie

Dans le cadre de son cycle de conférences sur les robots en milieux extrêmes, la Cité des Sciences et de l’Industrie en partenariat avec le magazine « Pour la Science » a invité Frédéric Boyer, professeur au sein de l’équipe ReV, à s’exprimer en direct le 14 janvier 2021. Il a présenté les travaux de son équipe sur le sens électrique – un 6ème sens pour la robotique sous-marine, et en particulier le projet européen SubCULTron (essaim de 120 drones bio-inspirés immergés dans la lagune vénitienne pour capter et collecter des données sur les pollutions, la salinité, les courants ou la hauteur du marnage).

Retrouvez cette conférence en replay sur la chaîne Youtube de la Cité des Sciences et de l’Industrie (vidéo, 1h20).

H2020 : Beau palmarès pour le projet ROCABLE

Le projet « ROCABLE – Towards Safe and Collaborative Cable-Driven Parallel Robots« , soumis mi-juillet dans le cadre de l‘appel à projets COVR a été accepté.

Ce projet, coordonné par Stéphane Caro, implique les équipes RoMaS, ReV et OGRE du LS2N, ainsi que l’IRT Jules Verne, Eiffage Énergie Systèmes – Clemessy, et INRIA Sophia-Antipolis.

Le projet ROCABLE aborde les questions de sécurité spécifiques aux Robots Parallèles à Câbles (RPC), une classe de robots parallèles dont la plate-forme mobile est reliée à une base fixe par des câbles. La nature non rigide, de faible masse et élastique des câbles pose aux RPC des problèmes de sécurité uniques. De plus, l’absence de normes et d’études de sécurité sur les RPC est un obstacle important à l’adoption des RPC dans l’industrie. Les objectifs du projet COV-R ROCABLE sont de :

  1. Déterminer les normes et directives pertinentes pour utiliser des RPC coexistant avec les opérateurs humains ;
  2. Faire part aux partenaires de COV-R des aspects nouveaux concernant les RPC qui pourraient être soumis aux autorités de régulation ;
  3. Utiliser les protocoles existants définis par les partenaires de COV-R et les appliquer lorsque pertinents à COV-R ROCABLE
  4. Développer des fonctions logicielles/matérielles liées à la sécurité pour gérer l’arrêt d’urgence des RPC ;
  5. Analyser les risques et fournir des solutions de secours (redondance d’actionnement, limites de l’espace de travail, facteurs de sécurité plus importants et inspection).

Les résultats du projet COV-R ROCABLE rapprocheront les robots parallèles à câbles du marquage CE.

Copyright : LS2N 2017 - Mentions Légales - 
 -