Nans Laroche, doctorant au sein de l‘équipe SIMS, soutiendra sa thèse intitulée « Méthodes d’imagerie ultrasonore avancées et rapides pour le contrôle non destructif de matériaux atténuants et diffusants » / « Fast and advanced ultrasonic imaging methods for non destructive testing of attenuative and diffusive materials »
lundi 18 octobre 2021 à 14h15, dans l’amphi du bâtiment S sur le site de Centrale Nantes.
Le manuscrit est accessible ici: https://box.ec-nantes.fr/index.php/s/g7YEzZKcn8KxMPp
Jury :
– Directeur de thèse : Jérôme IDIER
– Co-encadrants : Sébastien BOURGUIGNON (maître de conférence); Aroune DUCLOS (maître de conférence, Laboratoire d’Acoustique de l’Université du Mans);
– Rapporteurs : Nicolas QUAEGEBEUR (Professeur, Université de Sherbrooke) ; Jean-Philippe THIRAN (Professeur, Ecole Polytechnique Fédérale de Lausanne).
– Autres membres : Ewen CARCREFF (docteur, encadrant industriel, DB-SAS)
Résumé : Le développement de sondes multiéléments et les progrès continus en électronique ont favorisé l’émergence des méthodes d’imagerie ultrasonore pour le contrôle non-destructif (CND). En particulier, les approches linéaires de type formation de voies sont largement utilisées pour leur simplicité et leur rapidité, rendant possible l’imagerie en temps réel. Néanmoins, la résolution et le contraste des images reconstruites sont limités par la nature oscillante de l’onde ultrasonore.
Cette thèse aborde l’imagerie ultrasonore sous l’angle des problèmes inverses. La reconstruction de l’image de réflectivité à partir de mesures ultrasonores, dont l’information est limitée par la bande passante des transducteurs, est un problème inverse mal posé. Dans ces travaux, nous adoptons des techniques d’inversion par régularisation favorisant la reconstruction de solutions à la fois parcimonieuses et lisses spatialement, i.e. d’extension spatiale limitée. Nous cherchons ainsi à reconstruire une carte de réflectivité d’un milieu globalement sain, ne contenant éventuellement que quelques réflecteurs de petite taille. Une première contribution décrit la mise en œuvre et l’inversion d’un modèle linéaire reliant les données brutes de grande taille à la réflectivité du milieu, via un opérateur contenant les formes d’ondes ultrasonores. Un deuxième axe est basé sur la projection du modèle de données ultrasonores dans l’espace image via une technique de formation de voies. L’inversion du modèle résultant, de plus petite taille, est alors interprétée comme un problème de déconvolution à réponse impulsionnelle variable spatialement et à bruit coloré.
Un modèle interpolateur est proposé, permettant une inversion rapide. Un dernier axe de travail adapte ces méthodes à des milieux ayant des propriétés acoustiques complexes telles que l’atténuation fréquentielle et la dispersion, pour lesquels l’onde acoustique se déforme lors de sa propagation.
Les méthodes proposées sont évaluées sur des données synthétiques et appliquées à des exemples concrets de CND. Un pouvoir de résolution bien supérieur aux méthodes standard est obtenu, au prix d’une complexité calculatoire plus élevée.
Mots-clés : contrôle non-destructif, imagerie ultrasonore, problèmes inverses, focalisation en tout point, parcimonie
—————————————————————————————————————————————————————————————————————————————————————-
Abstract: The development of multi-element probes and continuous progress in electronics have favored the generalization of ultrasonic imaging methods for non destructive testing (NDT). In particular, the total focusing method is widely used due to its simplicity and real-time capability. Nevertheless, the resolution and contrast of the resulting images are limited due to the oscillating nature of the ultrasonic wave.
This work addresses ultrasonic imaging from an inverse problem perspective. Retrieving the reflectivity map from ultrasonic measurements acquired with band-limited transducers is an ill-posed problem. In this work, we develop inversion methods based on a regularization framework that enhances both the sparsity and the spatial smoothness of the reconstructed solution. Therefore, we assume that the reflectivity map is mainly homogeneous and possibly contains only few reflectors of small size. A first contribution describes the implementation and the inversion of a linear model that relates the raw, large-size, ultrasonic data to the reflectivity image, through a matrix containing the ultrasonic waveforms. A second contribution consists in projecting the previous model involving raw ultrasonic data in the space domain through a linear beamforming method. The size of the resulting model is therefore reduced, and its inversion can be interpreted as a deconvolution problem with a non stationary point spread function and colored noise. We hence propose an interpolation model in order to obtain a computationally efficient method. Finally, the last part of this work consists in applying the proposed methods to media with complex acoustic properties, such as frequency attenuation and dispersion, where the ultrasonic waveform is distorted during propagation.
These algorithms are applied to synthetic data and practical NDT cases and show superior resolving capabilities compared to standard methods, at the cost of higher computational complexity.
Keywords: non destructive testing, ultrasonic imaging, inverse problems, total focusing method, sparsity